火运考试网提供全国考试报名时间、考试政策解读及备考资料,涵盖公务员、教师资格、职业资格等考试资讯,同步分享职场工作总结模板与学习经验,助考生高效规划备考,一站式解决考试全周期需求。

初二数学试题,初二数学上期末试卷及答案

工作总结 2025-07-26 15:47:4766未知通谷蕊

火运考试网中的这篇文章是关于初二数学试题的相关信息,希望可以帮助到你。

初二数学下册试题

初二数学下册试题

一、选择题

1、甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()

A、s是变量 B、t是变量 C、v是变量 D、s是常量

2、关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y= 、其中y是x函数的是()

A、①②③ B、①②③④ C、①③ D、①③④

3、小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()

A、Q=8x B、Q=8x﹣50 C、Q=50﹣8x D、Q=8x+50

二、填空题

4、3x﹣y=7中,变量是(),常量是()、把它写成用x的式子表示y的形式是()

5、函数y=|x﹣b|,当x=1或3时,对应的两个函数值相等,则实数b的值是()

6、下面是用棋子摆成的`“上”字:按照图中规律继续摆下去,第n个“上”字需用棋子数s与n之间的关系式为()

三、解答题

7、写出下列问题中的关系式,并指出其中的变量和常量

(1)直角三角形中一个锐角a与另一个锐角β之间的关系;

(2)一盛满30吨水的水箱,每小时流出0、5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨)

8、等腰三角形周长为10cm,底边BC长为ycm,腰AB长为xcm

(1)写出y关于x的函数关系式;

(2)求x的取值范围;

(3)求y的取值范围、

9、一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0、1L/km

(1)写出表示y与x的函数关系式

(2)指出自变量x的取值范围

(3)汽车行驶200km时,油箱中还有多少汽油?

10、杨嫂在社区扶持下,创办了“润扬”报刊零售点、对经营的某种晚报,杨嫂提供了如下信息:

①买进每份0、50元,卖出每份1元;

②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;

③一个月内,每天从报社买进的报纸份数必须相同、当天卖不掉的报纸,以每份0.20元退回给报社

(1)一个月内每天买进该种晚报的份数分别为100和150时,月利润是多少元?

(2)上述的哪些量在发生变化?自变量和函数各是什么?

(3)设每天从报社买进该种晚报x份(120≤x≤200),月利润为y元,请写出y与x的关系式,并确定月利润的最大值。

初二数学试卷及答案解析

一切知识都源于无知,一切无知都源于对知识的认知。最根深蒂固的无知,不是对知识的无知,而是对自己无知的无知。下面给大家分享一些关于初二数学试卷及答案解析,希望对大家有所帮助。

一、选择题(每小题3分,9小题,共27分)

1.下列图形中轴对称图形的个数是()

A.1个B.2个C.3个D.4个

【考点】轴对称图形.

【分析】根据轴对称图形的概念求解.

【解答】解:由图可得,第一个、第二个、第三个、第四个均为轴对称图形,共4个.

故选D.

【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

2.下列运算不正确的是()

A.x2x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3

【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.

【分析】本题考查的知识点有同底数幂乘法法则,幂的乘 方法 则,合并同类项,及积的乘方法则.

【解答】解:A、x2x3=x5,正确;

B、(x2)3=x6,正确;

C、应为x3+x3=2x3,故本选项错误;

D、(﹣2x)3=﹣8x3,正确.

故选:C.

【点评】本题用到的知识点为:

同底数幂的乘法法则:底数不变,指数相加;

幂的乘方法则为:底数不变,指数相乘;

合并同类项,只需把系数相加减,字母和字母的指数不变;

积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.

3.下列关于分式的判断,正确的是()

A.当x=2时,的值为零

B.无论x为何值,的值总为正数

C.无论x为何值,不可能得整数值

D.当x≠3时,有意义

【考点】分式的值为零的条件;分式的定义;分式有意义的条件.

【分析】分式有意义的条件是分母不等于0.

分式值是0的条件是分子是0,分母不是0.

【解答】解:A、当x=2时,分母x﹣2=0,分式无意义,故A错误;

B、分母中x2+1≥1,因而第二个式子一定成立,故B正确;

C、当x+1=1或﹣1时,的值是整数,故C错误;

D、当x=0时,分母x=0,分式无意义,故D错误.

故选B.

【点评】分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.

4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()

A.﹣20B.﹣16C.16D.20

【考点】因式分解-十字相乘法等.

【专题】计算题.

【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.

【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,

可得m=﹣20,

故选A.

【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.

5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()

A.11cmB.7.5cmC.11cm或7.5cmD.都不对

【考点】等腰三角形的性质.

【分析】分边11cm是腰长与底边两种情况讨论求解.

【解答】解:①11cm是腰长时,腰长为11cm,

②11cm是底边时,腰长=(26﹣11)=7.5cm,

所以,腰长是11cm或7.5cm.

故选C.

【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.

6.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD等于()

A.30°B.36°C.38°D.45°

【考点】等腰三角形的性质.

【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.

【解答】解:∵AB=AC,∠BAC=108°,

∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,

∵BD=AB,

∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,

∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.

故选B.

【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.

7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()

A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE

【考点】全等三角形的性质.

【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.

【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,

∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,

故A、B、C正确;

AD的对应边是AE而非DE,所以D错误.

故选D.

【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.

8.计算:(﹣2)2015()2016等于()

A.﹣2B.2C.﹣D.

【考点】幂的乘方与积的乘方.

【分析】直接利用同底数幂的乘法运算法则将原式变形进而求出答案.

【解答】解:(﹣2)2015()2016

=[(﹣2)2015()2015]×

=﹣.

故选:C.

【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.

9.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()

A.1个B.2个C.3个D.4个

【考点】等腰三角形的判定.

【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.

【解答】解:要使△OAB为等腰三角形分三种情况讨论:

①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;

②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;

③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,

1+1+2=4,

故选:D.

【点评】本题主要考查了坐标与图形的性质及等腰三角形的判定;分类讨论是解决本题的关键.

二、填空题(共10小题,每小题3分,满分30分)

10.计算(﹣)﹣2+(π﹣3)0﹣23﹣|﹣5|=4.

【考点】实数的运算;零指数幂;负整数指数幂.

【专题】计算题;实数.

【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.

【解答】解:原式=16+1﹣8﹣5=4,

故答案为:4

【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

11.已知a﹣b=14,ab=6,则a2+b2=208.

【考点】完全平方公式.

【分析】根据完全平方公式,即可解答.

【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,

故答案为:208.

【点评】本题考查了完全平方公式,解决本题德尔关键是熟记完全平方公式.

12.已知xm=6,xn=3,则x2m﹣n的值为12.

【考点】同底数幂的除法;幂的乘方与积的乘方.

【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.

【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.

故答案为:12.

【点评】本题考查了同底数幂的除法运算及幂的乘方的知识,属于基础题,掌握各部分的运算法则是关键.

13.当x=1时,分式的值为零.

【考点】分式的值为零的条件.

【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.

【解答】解:x2﹣1=0,解得:x=±1,

当x=﹣1时,x+1=0,因而应该舍去.

故x=1.

故答案是:1.

【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.

14.(1999昆明)已知一个多边形的内角和等于900°,则这个多边形的边数是7.

【考点】多边形内角与外角.

【分析】根据多边形的内角和计算公式作答.

【解答】解:设所求正n边形边数为n,

则(n﹣2)180°=900°,

解得n=7.

故答案为:7.

【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.

15.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:

①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线.

其中正确的是①③.

【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.

【专题】几何图形问题.

【分析】根据角平分线性质得到AD平分∠BAC,由于题目没有给出能够证明∠C=∠DPF的条件,无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,先根据等腰三角形的性质可得∠PAD=∠ADP,进一步得到∠BAD=∠ADP,再根据平行线的判定可得DP∥AB.

【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F,

∴AD平分∠BAC,故①正确;

由于题目没有给出能够证明∠C=∠DPF的条件,只能得到一个直角和一条边对应相等,故无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,故②④错误;

∵AP=DP,

∴∠PAD=∠ADP,

∵AD平分∠BAC,

∴∠BAD=∠CAD,

∴∠BAD=∠ADP,

∴DP∥AB,故③正确.

故答案为:①③.

【点评】考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质和平行线的判定,综合性较强,但是难度不大.

16.用科学记数法表示数0.0002016为2.016×10﹣4.

【考点】科学记数法—表示较小的数.

【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

【解答】解:0.0002016=2.016×10﹣4.

故答案是:2.016×10﹣4.

【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

17.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是EF=BC.

【考点】全等三角形的判定.

【专题】开放型.

【分析】添加的条件:EF=BC,再根据AF=DC可得AC=FD,然后根据BC∥EF可得∠EFD=∠BCA,再根据SAS判定△ABC≌△DEF.

【解答】解:添加的条件:EF=BC,

∵BC∥EF,

∴∠EFD=∠BCA,

∵AF=DC,

∴AF+FC=CD+FC,

即AC=FD,

在△EFD和△BCA中,

∴△EFD≌△BCA(SAS).

故选:EF=BC.

【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

18.若x2﹣2ax+16是完全平方式,则a=±4.

【考点】完全平方式.

【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.

【解答】解:∵x2﹣2ax+16是完全平方式,

∴﹣2ax=±2×x×4

∴a=±4.

【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.

19.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为2n﹣1.

【考点】等边三角形的性质.

【专题】规律型.

【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.

【解答】解:∵△A1B1A2是等边三角形,

∴A1B1=A2B1,

∵∠MON=30°,

∵OA2=4,

∴OA1=A1B1=2,

∴A2B1=2,

∵△A2B2A3、△A3B3A4是等边三角形,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴A2B2=2B1A2,B3A3=2B2A3,

∴A3B3=4B1A2=8,

A4B4=8B1A2=16,

A5B5=16B1A2=32,

以此类推△AnBnAn+1的边长为2n﹣1.

故答案为:2n﹣1.

【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.

三、解答题(本大题共7小题,共63分)

20.计算

(1)(3x﹣2)(2x+3)﹣(x﹣1)2

(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)

【考点】整式的混合运算.

【分析】(1)利用多项式乘多项式的法则进行计算;

(2)利用整式的混合计算法则解答即可.

【解答】解:(1)(3x﹣2)(2x+3)﹣(x﹣1)2

=6x2+9x﹣4x﹣6﹣x2+2x﹣1

=5x2+7x﹣7;

(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)

=﹣3x2+4x﹣3x+3x2﹣2+2x

=3x﹣2.

【点评】本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

21.分解因式

(1)a4﹣16

(2)3ax2﹣6axy+3ay2.

【考点】提公因式法与公式法的综合运用.

【分析】(1)两次利用平方差公式分解因式即可;

(2)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.

【解答】解:(1)a4﹣16

=(a2+4)(a2﹣4)

=(a2+4)(a+2)(a﹣2);

(2)3ax2﹣6axy+3ay2

=3a(x2﹣2xy+y2)

=3a(x﹣y)2.

【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

22.(1)先化简代数式,然后选取一个使原式有意义的a的值代入求值.

(2)解方程式:.

【考点】分式的化简求值;解分式方程.

【专题】计算题;分式.

【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值;

(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

【解答】解:(1)原式=[+]==,

当a=2时,原式=2;

(2)去分母得:3x=2x+3x+3,

移项合并得:2x=﹣3,

解得:x=﹣1.5,

经检验x=﹣1.5是分式方程的解.

【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

23.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)

(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.

(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).

提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.

【考点】作图-轴对称变换;轴对称-最短路线问题.

【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;

(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.

【解答】解:(1)所作图形如图所示:

A1(3,1),B1(0,0),C1(1,3);

(2)作出点B关于x=﹣1对称的点B1,

连接CB1,与x=﹣1的交点即为点D,

此时BD+CD最小,

点D坐标为(﹣1,1).

故答案为:(﹣1,1).

【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.

24.如图,已知:AD平分∠CAE,AD∥BC.

(1)求证:△ABC是等腰三角形.

(2)当∠CAE等于多少度时△ABC是等边三角形证明你的结论.

【考点】等腰三角形的判定;等边三角形的判定.

【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.

(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.

【解答】(1)证明:∵AD平分∠CAE,

∴∠EAD=∠CAD,

∵AD∥BC,

∴∠EAD=∠B,∠CAD=∠C,

∴∠B=∠C,

∴AB=AC.

故△ABC是等腰三角形.

(2)解:当∠CAE=120°时△ABC是等边三角形.

∵∠CAE=120°,AD平分∠CAE,

∴∠EAD=∠CAD=60°,

∵AD∥BC,

∴∠EAD=∠B=60°,∠CAD=∠C=60°,

∴∠B=∠C=60°,

∴△ABC是等边三角形.

【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.

25.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器

【考点】分式方程的应用.

【专题】应用题.

【分析】本题考查列分式方程解实际问题的能力,因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.

【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.

依题意得:.

解得:x=200.

检验:当x=200时,x(x﹣50)≠0.

∴x=200是原分式方程的解.

答:现在平均每天生产200台机器.

【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.

26.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD.求证:

(1)BD=CE;

(2)BD⊥CE.

【考点】全等三角形的判定与性质;等腰直角三角形.

【专题】证明题.

【分析】(1)由条件证明△BAD≌△CAE,就可以得到结论;

(2)根据全等三角形的性质得出∠ABD=∠ACE.根据三角形内角和定理求出∠ACE+∠DFC=90°,求出∠FDC=90°即可.

【解答】证明:(1)∵△ACB和△ADE都是等腰直角三角形,

∴AE=AD,AB=AC,∠BAC=∠DAE=90°,

∴∠BAC+∠CAD=∠EAD+∠CAD,

即∠BAD=∠CAE,

在△BAD和△CAE中,

∴△BAD≌△CAE(SAS),

∴BD=CE;

(2)如图,

∵△BAD≌△CAE,

∴∠ABD=∠ACE,

∵∠CAB=90°,

∴∠ABD+∠AFB=90°,

∴∠ACE+∠AFB=90°,

∵∠DFC=∠AFB,

∴∠ACE+∠DFC=90°,

∴∠FDC=90°,

∴BD⊥CE.

【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.

初二数学试卷及答案解析相关 文章 :

★ 初二数学期末考试试卷分析

★ 八年级下册数学测试卷及答案解析

★ 八年级下册数学试卷及答案

★ 八年级下数学测试卷及答案分析

★ 八年级数学月考试卷分析

★ 八年级上册数学考试试卷及参考答案

★ 八年级上册数学期末考试试卷及答案

★ 八年级下册期末数学试题附答案

★ 八年级数学试卷质量分析

★ 八年级下册数学练习题及答案

初二数学试题

初二数学试题(上)

一、选择题(本大题共15小题,每小题4分,共60分)在每小题所给的4个选项中,只有一项是符合题目要求的.请将正确答案涂在答题纸上。

1.下列长 度的三条线段能组成三角形的是

A.1,2,3 B.1, ,3 C.3,4,8 D.4,5,6

2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是

A. B. C. D.

3.下列运算正确的是

A. B. C. D.

4.用长方形纸片折出直角的平分线,下列折法正确的是

A. B. C. D.

5.化简 的结果是

A. B. C. D.

6.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=

A.118° B.119° C.120° D.121°

7.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC 于点D、E,则∠BAE=

A.80° B.60° C.50° D.40°

8.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为

A.36° B.60° C.72° D.108°

9.在平面直角坐标系中,点(4,﹣5)关于x轴对称点的坐标为

A.(4,5) B.(﹣4,﹣5) C.(﹣4,5) D.(5,4)

10.请你计算:(1﹣x)(1+x),

(1﹣x)(1+x+x2),…,

猜想:(1﹣x)(1+x+x2+…+xn)的结果是

A. 1﹣xn+1 B. 1+xn+1 C. 1﹣xn D. 1+xn

11.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证

A. (a+b)2=a2+2ab+b2 B. (a﹣b)2=a2-2ab+b2

C. (a+b)(a﹣b)= a2﹣b2 D. (a+2b)(a﹣b)=a2+ab﹣2b2

12. 下列变形正确的是

A. B. C. D.

13. 下列计算中,不正确的是

A. B.

C. D.

14. 已知 , ,则

A.4 B.3 C.12 D.1

15. 一项工程,甲单独做要x天完成,乙单独做要y天完成,则甲、乙合做完成工程需要的天数为

A. B. C. D.

二、填空题(本大题共4小题,每小题5分,共20分).

16. 因式分解: __.

17. 分式方程 的解是_.

18. 如图,将长方形ABCD沿AE折叠,得到如图的图形.已 知∠CEB′=50°,则∠AEB′的度数为__.

19. 如图,将一副直角三角板叠在一起,使直角顶点重合于点O,若∠DOC=28°,则∠AOB的度数为 .

三、解答题 (共20分)

20. (满分8分) 某市为治理污水,需要铺设一段全长为300米的污水排放管道.铺设120米后,为了尽量减少施工对城市所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求后来每天铺设管道的长度.

21. (满分12分) 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作 △ADE,使AD=AE,∠DAE=∠BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的 度数;

(2)设∠BAC=α,∠BCE=β.

①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系请说明理由;

②当点D在直线BC上移动,则α,β之间有怎样的数量关系请直接写出你的结论.

初二数学试题(下)

一.选择题

1.下列各式不是最简二次根式的是( )

A. B. C. D.

2.下 列根式中,与 是同类二次根式的是( )

A. B. C. D.

3. △ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )

A.如果∠C-∠B=∠A,则△ABC是直角三角形。

B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。

C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。

4. 下列命题的逆命题是真命题的个数为( )

(1)对顶角相等;(2)等腰三角形的两个底角相等;(3)三组边分别相等的两个三角形全等.

A.0个 B.1个 C.2个 D.3个

5.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )

A.第三边为 B.三角形的周长为25

C.三角形的面积为48 D.第三边可能为10

6.顺次连结四边形四条边的中点,所得的四边形是矩形,则原四边形一定是( )

A.平行四边形 B. 对角线相等的四边形 C. 矩形 D. 对角线互相垂直的四边形

7. 已知一个菱形的周长是20cm,两条对角线的比是4∶3,则这个菱形的`面积是( )

A.12cm2 B. 24cm2 C. 48cm2 D. 96cm2

8. 若 , ,则 ( )

A. B. C. D.

9.下列四个说法:

①一组对角相等,一组邻角互补的四边形是平行四边形;

②一组对边平行,另一组对边相等的四边形是平行四边形;

③一组对边平行,一组对角相等的四边形是平行四边形;

④一组对边相等,一组对角相等的四边形是平行四边形;其中说法正确的个数是( )

A.1个 B.2个 C.3个 D.4个

10. 如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是( )

初二数学上期末试卷及答案

时光飞逝,做好初二数学期末复习准备,考场上充分发挥自己的数学能力。沉着才见英雄本色。下面由我为你整理的初二数学上期末试卷,希望对大家有帮助!

初二数学上期末试卷

一、选择题

1.某地一天的最高气温是12℃,最低气温是﹣2℃,则该地这天的温差是()

A.﹣10℃ B.10℃ C.14℃ D.﹣14℃

2.据报道,目前我国“天河二号”超级计算机的运算位居全球第一,其运算达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()

A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109

3.如图,放置的一个机器零件(图1),若从正面看到的图形如(图2)所示,则从上面看到的图形是()

A. B. C. D.

4.下列说法正确的是()

A.有理数分为正数和负数

B.有理数的相反数一定比0小

C.绝对值相等的两个数不一定相等

D.有理数的绝对值一定比0大

5.单项式﹣23a2b3的系数和次数分别是()

A.﹣2,8 B.﹣8,5 C.2,8 D.﹣2,5

6.若a+b<0且ab<0,那么()

A.a<0,b>0 B.a<0,b<0

C.a>0,b<0 D.a,b异号,且负数绝对值较大

7.把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是()

A.过一点有无数条直线 B.两点确定一条直线

C.两点之间线段最短 D.线段是直线的一部分

8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为()

A.192.5元 B.200元 C.244.5元 D.253元

9.如图,两块直角三角板的直顶角O重合在一起,若∠BOC= ∠AOD,则∠BOC的度数为()

A.30° B.45° C.54° D.60°

10.适合|2a+5|+|2a﹣3|=8的整数a的值有()

A.4个 B.5个 C.7个 D.9个

二、填空题

11.﹣ 的相反数是.

12.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是边形.

13.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=.

14.如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为 的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,…,Pn,…,记纸板Pn的面积为Sn,试通过计算S1,S2,猜想得到Sn﹣1﹣Sn=(n≥2).

三、解答题

15.计算题

(1)30×( ﹣ ﹣ );

(2)﹣14﹣(1﹣0.5)× ×[1﹣(﹣2)3].

16.解方程:

(1) ﹣ =1

(2) ﹣ =0.5.

17.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).

18.先化简,再求值(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2),其中x=2,y=1.

19.新年快到了,贫困山区的孩子想给资助他们的王老师写封信,折叠长方形信纸装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4 cm,试求信纸的纸长和信封的口宽.

20.雾霾天气严重影响市民的生活质量,在今年元旦期间,某校七年级一班的同学对“雾霾天气的主要成因”就市民的看法做了随机调查,并对调查结果进行了整理,绘制了不完整的统计图表(如下图),观察分析并回答下列问题.

组别 雾霾天气的主要成因 百分比

A 工业污染 45%

B 汽车尾气排放 m

C 炉烟气排放 15%

D 其它(滥砍滥伐等) n

(1)本次被调查的市民共有人;

(2)补全条形统计图;

(3)图2中区域B所对应的扇形圆心角为度.

21.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.

22.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运动水泥总运费需要25900元.(运费:元/吨,表示运送每吨水泥所需的人民币)

(1)设甲仓库运到A工地水泥为x吨,请在下面表格中用x表示出其它未知量.

甲仓库 乙仓库

A工地 x

B工地 x+10

(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)

(3)求甲仓库运到A工地水泥的吨数.

23.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B的左侧,C在D的左侧).

(1)当D点与B点重合时,AC=;

(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA+PB﹣2PC的值;

(3)M、N分别是AC、BD的中点,当BC=4时,求MN的长.

初二数学上期末试卷参考答案与试题解析

一、选择题

1.某地一天的最高气温是12℃,最低气温是﹣2℃,则该地这天的温差是()

A.﹣10℃ B.10℃ C.14℃ D.﹣14℃

【考点】有理数的减法.

【分析】根据题意用最高气温12℃减去最低气温﹣2℃,根据减去一个数等于加上这个数的相反数即可得到答案.

【解答】解:12﹣(﹣2)=14(℃).故选:C.

2.据报道,目前我国“天河二号”超级计算机的运算位居全球第一,其运算达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()

A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.

故选:A.

3.如图,放置的一个机器零件(图1),若从正面看到的图形如(图2)所示,则从上面看到的图形是()

A. B. C. D.

【考点】简单组合体的三视图.

【分析】根据从上边看得到的图形是俯视图,可得答案.

【解答】解:从上边看是等宽的三个矩形,

故选:D.

4.下列说法正确的是()

A.有理数分为正数和负数

B.有理数的相反数一定比0小

C.绝对值相等的两个数不一定相等

D.有理数的绝对值一定比0大

【考点】有理数;相反数;绝对值.

【分析】根据有理数的分类、绝对值的性质,可得答案.

【解答】解:A、有理数分为正数、零、负数,故A不符合题意;

B、负数的相反数大于零,故B不符合题意;

C、互为相反数的绝对值相等,故C符合题意;

D、绝对值是非负数,故D不符合题意;

故选:C.

5.单项式﹣23a2b3的系数和次数分别是()

A.﹣2,8 B.﹣8,5 C.2,8 D.﹣2,5

【考点】单项式.

【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.

【解答】解:单项式﹣23a2b3的系数和次数分别是﹣8,5,

故选B.

6.若a+b<0且ab<0,那么()

A.a<0,b>0 B.a<0,b<0

C.a>0,b<0 D.a,b异号,且负数绝对值较大

【考点】有理数的乘法;有理数的加法.

【分析】根据a+b<0且ab<0,可以判断a、b的符号和绝对值的大小,从而可以解答本题.

【解答】解:∵a+b<0且ab<0,

∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,

即a,b异号,且负数绝对值较大,

故选D.

7.把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是()

A.过一点有无数条直线 B.两点确定一条直线

C.两点之间线段最短 D.线段是直线的一部分

【考点】线段的性质:两点之间线段最短.

【分析】根据线段的性质,可得答案.

【解答】解:把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是两点之间线段最短,

故选:C.

8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为()

A.192.5元 B.200元 C.244.5元 D.253元

【考点】一元一次方程的应用.

【分析】设商品的进价为x元,由已知按标价八折出售,仍可获得10%的利润,可以表示出出售的价格为(1+10%)x元,商品标价为275元,则出售价为275×80%元,其相等关系是售价相等.由此列出方程求解.

【解答】解:设商品的进价为x元,根据题意得:

(1+10%)x=275×80%,

1.1x=220,

x=200.

故商品的进价为200元.

故选:B.

9.如图,两块直角三角板的直顶角O重合在一起,若∠BOC= ∠AOD,则∠BOC的度数为()

A.30° B.45° C.54° D.60°

【考点】角的计算.

【分析】此题“两块直角三角板”可知∠DOC=∠BOA=90°,根据同角的余角相等可以证明∠DOB=∠AOC,由题意设∠BOC=x°,则∠AOD=5x°,结合图形列方程即可求解.

【解答】解:由两块直角三角板的直顶角O重合在一起可知:∠DOC=∠BOA=90°

∴∠DOB+∠BOC=90°,∠AOC+∠BOC=90°,

∴∠DOB=∠AOC,

设∠BOC=x°,则∠AOD=5x°,

∴∠DOB+∠AOC=∠AOD﹣∠BOC=4x°,

∴∠DOB=2x°,

∴∠DOB+∠BOC=3x°=90°

解得:x=30

故选A.

10.适合|2a+5|+|2a﹣3|=8的整数a的值有()

A.4个 B.5个 C.7个 D.9个

【考点】绝对值.

【分析】此方程可理解为2a到﹣5和3的距离的和,由此可得出2a的值,继而可得出答案.

【解答】解:如图,由此可得2a为﹣4,﹣2,0,2的时候a取得整数,共四个值.

故选:A.

二、填空题

11.﹣ 的相反数是 .

【考点】相反数.

【分析】求一个数的相反数就是在这个数前面添上“﹣”号.

【解答】解:﹣ 的相反数是﹣(﹣ )= .

故答案为: .

12.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是八边形.

【考点】多边形的对角线.

【分析】根据n边形对角线公式,可得答案.

【解答】解:设多边形是n边形,由对角线公式,得

n﹣2=6.

解得n=8,

故答案为:八.

13.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=0.

【考点】整式的加减;数轴;绝对值.

【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.

【解答】解:根据题意得:a<0

∴a<0,c﹣b>0,a+b﹣c<0,

∴|a|+|c﹣b|﹣|a+b﹣c|=﹣a+(c﹣b)+(a+b﹣c)=﹣a+c﹣b+a+b﹣c=0.

故答案为0.

14.如图,P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为 的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P3,P4,…,Pn,…,记纸板Pn的面积为Sn,试通过计算S1,S2,猜想得到Sn﹣1﹣Sn=( )2n﹣1π.(n≥2).

【考点】扇形面积的计算.

【分析】由P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为 的半圆后得到图形P2,得到S1= π×12= π,S2= π﹣ π×( )2.同理可得Sn﹣1= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2,Sn= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2﹣ π×[( )n﹣1]2,它们的差即可得到.

【解答】解:根据题意得,n≥2.

S1= π×12= π,

S2= π﹣ π×( )2,

Sn﹣1= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2,

Sn= π﹣ π×( )2﹣ π×[( )2]2﹣…﹣ π×[( )n﹣2]2﹣ π×[( )n﹣1]2,

∴Sn﹣1﹣Sn= π×( )2n﹣2=( )2n﹣1π.

故答案为( )2n﹣1π.

三、解答题

15.计算题

(1)30×( ﹣ ﹣ );

(2)﹣14﹣(1﹣0.5)× ×[1﹣(﹣2)3].

【考点】有理数的混合运算.

【分析】(1)原式利用乘法分配律计算即可得到结果;

(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.

【解答】解:(1)原式=15﹣20﹣24=15﹣44=﹣29;

(2)原式=﹣1﹣ × ×9=﹣ .

16.解方程:

(1) ﹣ =1

(2) ﹣ =0.5.

【考点】解一元一次方程.

【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解是多少即可.

【解答】解:(1)去分母,得2(5+2x)﹣3(10﹣3x)=6

去括号,得10+4x﹣30+9x=6

移项,得4x+9x=6﹣10+30

合并同类项,得13x=26

系数化为1,得x=2

(2)去分母,得1.5x﹣0.3(1.5﹣x)=0.5×0.6

去括号,得1.5x+0.3x﹣0.45=0.3

移项,得1.5x+0.3x=0.3+0.45

合并同类项,得1.8x=0.75

系数化为1,得x=

17.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).

【考点】作图—复杂作图.

【分析】首先作射线,再截取AD=DC=a,进而截取BC=b,即可得出AB=2a﹣b.

【解答】解:如图所示:线段AB即为所求.

18.先化简,再求值(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2),其中x=2,y=1.

【考点】整式的加减—化简求值.

【分析】首先化简(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2),然后把x=2,y=1代入化简后的算式,求出算式的值是多少即可.

【解答】解:(﹣x2+3xy﹣ y2)﹣(﹣ x2+4xy﹣ y2)

=﹣x2+3xy﹣ y2+ x2﹣4xy+ y2

=﹣0.5x2﹣xy+y2

当x=2,y=1时,

原式=﹣0.5×22﹣2×1+12

=﹣2﹣2+1

=﹣3

19.新年快到了,贫困山区的孩子想给资助他们的王老师写封信,折叠长方形信纸装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4 cm,试求信纸的纸长和信封的口宽.

【考点】一元一次方程的应用.

【分析】设信纸的纸长为12xcm,则信封的口宽为(4x+1.4)cm,根据信纸的折法结合信封的口宽不变即可得出关于x的一元一次方程,解之即可得出结论.

【解答】解:设信纸的纸长为12xcm,则信封的口宽为(4x+1.4)cm.

根据题意得:3x+3.8=4x+1.4,

解得:x=2.4,

∴12x=28.8,4x+1.4=11.

答:信纸的纸长为28.8cm,信封的口宽为11cm.

20.雾霾天气严重影响市民的生活质量,在今年元旦期间,某校七年级一班的同学对“雾霾天气的主要成因”就市民的看法做了随机调查,并对调查结果进行了整理,绘制了不完整的统计图表(如下图),观察分析并回答下列问题.

组别 雾霾天气的主要成因 百分比

A 工业污染 45%

B 汽车尾气排放 m

C 炉烟气排放 15%

D 其它(滥砍滥伐等) n

(1)本次被调查的市民共有200人;

(2)补全条形统计图;

(3)图2中区域B所对应的扇形圆心角为108度.

【考点】条形统计图;统计表;扇形统计图.

【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;

(2)根据A、C组的百分比求得其人数,由各组人数之和可得D组人数,即可补全条形统计图;

(3)持有B组主要成因的市民百分比乘以360°求出答案.

【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,

∴本次被调查的市民共有:90÷45%=200人,

故答案为:200;

(2)∵A组的人数为200×45%=90(人),C组的人数为200×15%=30(人),

∴D组人数为200﹣90﹣60﹣30=20,

补全条形统计图如下:

(3)∵B组所占百分比为60÷200=30%,

∴30%×360°=108°,

即区域B所对应的扇形圆心角的度数为:108°,

故答案为:108.

21.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.

【考点】角的计算;角平分线的定义.

【分析】先设∠AOC=x,则∠COB=2∠AOC=2x,再根据角平分线定义得出∠AOD=∠BOD=1.5x,进而根据∠COD=25°列出方程,解方程求出x的值,即可得出答案.

【解答】解:设∠AOC=x,则∠COB=2∠AOC=2x.

∵OD平分∠AOB,

∴∠AOD=∠BOD=1.5x.

∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=0.5x.

∵∠COD=25°,

∴0.5x=25°,

∴x=50°,

∴∠AOB=3×50°=150°.

22.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运动水泥总运费需要25900元.(运费:元/吨,表示运送每吨水泥所需的人民币)

(1)设甲仓库运到A工地水泥为x吨,请在下面表格中用x表示出其它未知量.

甲仓库 乙仓库

A工地 x 70﹣x

B工地 100﹣x x+10

(2)用含x的代数式表示运送甲仓库100吨水泥的运费为﹣10x+15000元.(写出化简后的结果)

(3)求甲仓库运到A工地水泥的吨数.

【考点】一元一次方程的应用.

【分析】(1)根据题意填写表格即可;

(2)根据表格中的数据,以及已知的运费表示出总运费即可;

(3)根据本次运送水泥总运费需要25900元列方程化简即可.

【解答】解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为吨,

乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,

补全表格如下:

甲仓库 乙仓库

A工地 x 70﹣x

B工地 100﹣x x+10

故答案为:70﹣x;100﹣x;

(2)运送甲仓库100吨水泥的运费为140x+150=﹣10x+15000;

故答案为:﹣10x+15000;

(3)140x+150+200(70﹣x)+80(x+10)=25900,

整理得:﹣130x+3900=0.

解得x=30

答:甲仓库运到A工地水泥的吨数是30吨.

23.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B的左侧,C在D的左侧).

(1)当D点与B点重合时,AC=6;

(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA+PB﹣2PC的值;

(3)M、N分别是AC、BD的中点,当BC=4时,求MN的长.

【考点】线段的和差.

【分析】(1)根据题意即可得到结论;

(2)由(1)得AC= AB,CD= AB,根据线段的和差即可得到结论;

(3)需要分类讨论:①如图1,当点C在点B的右侧时,根据“M、N分别为线段AC、BD的中点”,先计算出AM、DN的长度,然后计算MN=AD﹣AM﹣DN;②如图2,当点C位于点B的左侧时,利用线段间的和差关系求得MN的长度.

【解答】解:(1)当D点与B点重合时,AC=AB﹣CD=6;

故答案为:6;

(2)由(1)得AC= AB,

∴CD= AB,

∵点P是线段AB延长线上任意一点,

∴PA+PB=AB+PB+PB,PC=CD+PB= AB+PB,

∴PA+PB﹣2PC=AB+PB+PB﹣2( AB+PB)=0;

(3)如图1,∵M、N分别为线段AC、BD的中点,

∴AM= AC= (AB+BC)=8,

DN= BD= (CD+BC)=5,

∴MN=AD﹣AM﹣DN=9;

如图2,∵M、N分别为线段AC、BD的中点,

∴AM= AC= (AB﹣BC)=4,

DN= BD= (CD﹣BC)=1,

∴MN=AD﹣AM﹣DN=12+6﹣4﹣4﹣1=9.

发表评论
看不清?点击更换

注:网友评论仅供其表达个人看法,并不代表本站立场。

Copyright © 2021-2022 火运考试网 版权所有

 备案号:赣ICP备2022011184号

联系QQ:  邮箱地址: